Surface groups are frequently faithful

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Groups are Frequently Faithful

We show the set of faithful representations of a closed orientable hyperbolic surface group is dense in both irreducible components of the PSL2(K) representation variety, where K = C or R, answering a question of W. Goldman. We also prove the existence of faithful representations into PU(2, 1) with certain nonintegral Toledo invariants.

متن کامل

On Faithful Representations of Lie Groups

where tE:R and I is the unit matrix of degree d. Let GL(K, d) denote the group of all nonsingular matrices of degree d with coefficients in K. Any subgroup of GL(K, d) will be called a linear group of degree d. Let 0 be the identity representation of a linear Lie group G with the Lie algebra 8 so that 9(x) =x (*EG). Then dd is a faithful representation of g and exp dd(X) =0(exp X) =exp X for an...

متن کامل

Random Extensions of Free Groups and Surface Groups Are Hyperbolic

In this note, we prove that a random extension of either the free group FN of rank N ě 3 or of the fundamental group of a closed, orientable surface Sg of genus g ě 2 is a hyperbolic group. Here, a random extension is one corresponding to a subgroup of either OutpFN q or ModpSgq generated by k independent random walks. Our main theorem is that a k–generated random subgroup of ModpSgq or OutpFN ...

متن کامل

Fixed subgroups are compressed in surface groups

For a compact surface Σ (orientable or not, and with boundary or not) we show that the fixed subgroup, FixB, of any family B of endomorphisms of π1(Σ) is compressed in π1(Σ), i.e., rk(FixB) 6 rk(H) for any subgroup FixB 6 H 6 π1(Σ). On the way, we give a partial positive solution to the inertia conjecture, both for free and for surface groups. We also investigate direct products, G, of finitely...

متن کامل

Non-faithful Representations of Surface Groups into Sl(2,c) Which Kill No Simple Closed Curve

We give counterexamples to a version of the simple loop conjecture in which the target group is PSL(2,C). These examples answer a question of Minsky in the negative.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2006

ISSN: 0012-7094

DOI: 10.1215/s0012-7094-06-13125-3